ORGANIC LETTERS

2011 Vol. 13, No. 22 6018–6021

Synthesis of a Platform To Access Bistramides and Their Analogues

Malgorzata Commandeur, Claude Commandeur, and Janine Cossy*

Laboratoire de Chimie Organique Associé au CNRS, ESPCI ParisTech, 10, rue Vauquelin, 75231 Paris Cedex 05, France

Janine.cossy@espci.fr

Received September 13, 2011

ABSTRACT

The platform C14—C40, which can be used to prepare bistramide C and 39-oxobistramide K, was synthesized in 19 steps with an overall yield of 6.2%. Furthermore, the chemoselective reduction of the ketone at C-39 was performed giving an easy access to bistramides A, B, D, K, and L. Finally, the versatility of the synthesis of the C14—C40 fragment can allow the preparation of a large variety of stereoisomers to produce bistramide analogues.

Bistramides A–D, K, and L belong to a family of natural products isolated from an ascidian, *Lissoclinum bistratum*, which was collected in New Caledonia

(1) Gouiffès, D.; Jugé, M.; Grimaud, N.; Welin, L.; Sauviat, M. P.; Barbin, Y.; Laurent, D.; Roussakis, C.; Hénichart, J. P.; Verbist, J. F. *Toxicon* **1988**, *26*, 1129–1136.

(2) (a) For isolation of bistramide A, see: Gouiffès, D.; Moreau, S.; Helbecque, N.; Bernier, J. L.; Hénichart, J. P.; Barbin, Y.; Laurent, D.; Verbist, J. F. *Tetrahedron* **1988**, *44*, 451–459 and cited references. (b) For isolation of bistratenes, which were deduced to be identical with bistramides, see: Degnan, B. M.; Hawkins, C. J.; Lavin, M. F.; McCaffrey, E. J.; Parry, D. L.; Watters, D. J. *J. Med. Chem.* **1989**, *32*, 1354–1359.

(3) (a) For isolation of bistramides A–D and K: Biard, J. F.; Roussakis, C.; Komprobst, J. M.; Gouiffes-Barbin, D.; Verbist, J. F.; Cotelle, P.; Foster, M. P.; Ireland, C. M.; Debitus, C. J. Nat. Prod. 1994, 57, 1336–1345. (b) For isolation of bistramides D, K, and L: Biard, J. F.; Cortadellas, D.; Debitus, C.; Laurent, D.; Roussakis, C.; Verbist, J. F. WO 9420503 A1, 1994.

(4) Murphy, B. T.; Cao, S.; Brodie, P.; Maharavo, J.; Andriamanantoanina, H; Ravelonandro, P.; Kingston, D. G. *J. Nat. Prod.* **2009**, *72*, 1338–40.

(5) (a) Gautret, P.; Le Pape, P.; Biard, J. F.; Menard, D.; Verbist, J. F.; Marjolet, M. *Acta Parasitol.* **1998**, *43*, 50–53. (b) See ref 3b.

(6) (a) Pusset, J.; Maillere, B.; Debitus, C. *J. Nat. Toxins* **1996**, 5, 1–6. (b) See also ref 5a.

(7) (a) See ref 3a. (b) Rizvi, S. A.; Liu, S.; Chen, Z.; Skau, C.; Pytynia, M.; Kovar, D. R.; Chmura, S. J.; Kozmin, S. A. J. Am. Chem. Soc. 2010, 132, 7288–7290. (c) Kozmin, S. A.; Rizvi, S. US 20100217019 A1, 2010. (d) Rizvi, S. A.; Courson, D. S.; Keller, V. A.; Rock, R. S.; Kozmin, S. A. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4088–4092. (e) Rivzi, S. A.; Tereshko, V.; Kossiakoff, A. A.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 3882–3883. (f) Statsuk, A. V.; Bai, R.; Baryza, J. L.; Verma, V. A.; Hamel, E.; Wender, P. A.; Kozmin, S. A. Nat. Chem. Biol. 2005, 1, 383–388. (g) Johnson, W. E. B.; Watters, D. J.; Suniara, R. K.; Brown, G.; Bunce, C. M. Biochem. Biophys. Res. Commun. 1999, 260, 80–88.

(Nouméa).¹ Since their isolation in 1988² and 1994,³ a new member of this family, 39-oxobistramide K, has been isolated in 2009 from *Trididemnum cyclops* in Madagascar (Scheme 1).⁴ Bistramides have shown to exhibit numerous biological properties such as antiparasitic,⁵ immunomodulatory,⁶ neurotoxic,¹ antiproliferative,⁷ and cytotoxic activities.⁸ Due to the biological properties and the challenging molecular structure of bistramides, it is not surprising that bistramides have elicited considerable interest from the synthetic community.⁹

Herein, we report a convergent approach to a platform that could allow the synthesis of all bistramides and their analogues. In considering a retrosynthetic scheme for the bistramides, the C14—C40 spiroketalic subunit A could be considered as a common fragment to all bistramides and, accordingly, was selected as our target molecule (Scheme 2).

Recently, we have shown that a spiroketal of type II can be formed in good yield and diastereoselectivity from an ω -unsaturated lactol of type I when treated with FeCl₃ (Scheme 3).¹⁰

^{(8) (}a) Riou, D.; Roussakis, C.; Biard, J. F.; Verbist, J. F. *Anticancer Res.* **1993**, *13*, 2331–2334. (b) Liscia, E.; Riou, D.; Siavoshian, S.; Boesch, S.; Lebert, V.; Tomasoni, C.; Dabouis, G.; Biard, J. F.; Roussakis, C. *Anticancer Res.* **1996**, *16*, 1209–1212. (c) Siavoshian, S.; Jacquot, C.; Biard, J. F.; Briand, G.; Roussakis, C. *Anticancer Res.* **1999**, *19*, 5361–5365. (d) see also ref 7.

Scheme 1. Bistramides A-D, K, L and 39-Oxobistramide K

Scheme 2. Retrosynthetic Approach to All Bistramides from A

Scheme 3. Fecl₃-Catalyzed Spiroketalization of Unsaturated Lactol

With the aim of developing a convergent route to **A**, an appropriate disconnection point appeared to be at the C18–C19 bond which led to two fragments **B** and **C**. Our strategy for fragment **C** would rely on four key reactions, a Horner–Wadsworth–Emmons (HWE) reaction to introduce the unsaturation at C36–C37, a Wittig reaction to form the C32–C33 bond, a spiroketalization of an unsaturated lactol of type **D**, and a cross-metathesis to introduce the unsaturation in lactol **D**. Lactol **D** would be synthesized from lactone **E** whose stereogenic centers would be controlled by enantioselective crotyltitanation. ¹¹ Lactone **E** would itself be available from the cheap commercially available 1,4-butanediol (7) (Scheme 4).

The C14–C18 region of the target represented by amino acid $\mathbf{6}$ was synthesized from allylamine $\mathbf{1}$. The first step consisted of a bis-protection of the amine (Boc₂O,

Scheme 4. Retrosynthetic Approach towards A

4-DMAP, CH₃CN, rt then 60 °C) to obtain the corresponding bis-carbamate 2 (70% yield). 12 After ozonolysis $(O_3, CH_2Cl_2, -78 \,^{\circ}C \text{ then Me}_2S)$, aldehyde 3 (80% yield)¹² was treated with the highly face-selective titanium complex (S,S)-Ti-I (Et₂O, -78 °C, 18 h), ¹¹ leading to the corresponding homoallylic alcohol in good diastereoselectivity and enantioselectivity (dr > 95/5; ee > 95%). In order to transform the latter to the corresponding carboxylic acid 5, the hydroxyl group was protected (TESCl, imid.) and the resulting silvl ether 4 was oxidatively cleaved (NaIO₄, RuCl₃, CCl₄/MeCN/H₂O, rt, 16 h). ⁹ⁿ After a deprotection/ protection sequence, the Fmoc-protected amino acid 6 was isolated in 71% yield over three steps (Scheme 5). Thereby, fragment C14–C18 was synthesized in an overall yield of 34% yield over seven steps which, according to our knowledge, is the most efficient synthesis for compound 6. 9j,n

The synthesis of spiroketal **20** was next undertaken (Schemes 6, 7) from the commercially available 1,4-butanediol (7). The first step entailed monoprotection of one of the primary hydroxyl groups as a *tert*-

Org. Lett., Vol. 13, No. 22, **2011**

^{(9) (}a) Bauder, C. Eur. J. Org. Chem. 2010, 6207–6216. (b) Tomas, L.; Gueyrard, D.; Goekjian, P. G. Tetrahedron Lett. 2010, 51, 4599-4601. (c) Hiebel, M.-A.; Pelotier, B.; Piva, O. Tetrahedron Lett. 2010, 51, 5091-5093. (d) Wrona, I. E.; Lowe, J. T.; Turbyville, T. J.; Johnson, T. R.; Beignet, J.; Beutler, J. A.; Panek, J. S. *J. Org. Chem.* **2009**, *74*, 1897–1916. (e) Hiebel, M.-A.; Pelotier, B.; Lhoste, P.; Piva, O. Synlett 2008, 1202-1204. (f) Lowe, J. T.; Wrona, I. E.; Panek, J. S. Org. Lett. 2007, 9, 327-330. (g) Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9, 4587-4589. (h) Kiyota, H. Top. Heterocycl. Chem. 2006, 5, 65-95. (i) Bauder, C.; Biard, J. F.; Solladié, G. Org. Biomol. Chem. 2006, 4, 1860–1862. (j) Crimmins, M. T.; DeBaillie, A. C. J. Am. Chem. Soc. 2006, 128, 4936-4937. (k) Zuber, G.; Goldsmith, M. R.; Hopkins, T. D.; Beratan, D. N.; Wipf, P. Org. Lett. 2005, 7, 5269-5272. (1) Lowe, J. T.; Panek, J. S. Org. Lett. **2005**, 7, 3231–3234. (m) Wipf, P.; Hopkins, T. D. *Chem. Commun.* **2005**, 3421–3423. (n) Statsuk, A. V.; Liu, D.; Kozmin, S. A. *J. Am. Chem. Soc.* **2004**, *126*, 9546–9547. (o) Wipf, P.; Uto, Y.; Yoshimura, S. *Chem.—Eur. J.* **2002**, *8*, 1670–1681. (p) Gallagher, P. O.; McErlean, C. S. P.; Jacobs, M. F.; Watters, D. J.; Kitching, W. *Tetrahedron Lett.* **2002**, *43*, 531–535. (q) Solladié, G.; Bauder, C.; Biard, J. F. *Tetrahedron Lett.* **2000**, *41*, 7747–7750. (r) Foster, M. P.; Mayne, C. L.; Dunkel, R.; Pugmire, R. J.; Grant, D. M.; Kornprobst, J. M.; Verbist, J. F.; Biard, J. F.; Ireland, C. M. J. Am. Chem. Soc. 1992, 114, 1110–1111.

⁽¹⁰⁾ Guérinot, A.; Serra-Muns, A.; Gnamm, C.; Bensoussan, C.; Reymond, S.; Cossy, J. *Org. Lett.* **2010**, *12*, 1808–1811.

^{(11) (}a) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rhote-Streit, P.; Schwarzenbach, F. *J. Am. Chem. Soc.* **1992**, *114*, 2321–2336. (b) Cossy, J.; Bouzbouz, S.; Pradaux, F.; Willis, C.; Bellosta., V. *Synlett* **2002**, 1595–1606.

⁽¹²⁾ Varney, M. D.; Romines, W. H.; Palmer, C. L. U.S. Patent 5,594,139, 1997, 20 pp.

Scheme 5. Synthesis of C14–C18 Fragment 6

butyldiphenylsilyl ether (TBDPS) (Scheme 6). ¹³ Oxidation of the second primary hydroxyl group to aldehyde **8** was performed by using a Swern oxidation under standard conditions [(COCl)₂, DMSO, CH₂Cl₂, -78 °C, then Et₃N]. This oxidation was followed by a diastereoselective crotyltitanation using the highly face-selective titanium complex (R,R)-[Ti]-**I** (Et₂O, -78 °C); ¹¹ it led to the corresponding homoallylic alcohol **9** (97% over two steps, dr > 95/5, ee > 95%, [α]_D²⁰ = +4.5 (c = 6.4, EtOH)). ¹⁴

In order to access the six-membered ring lactone 11, homoallylic alcohol 9 was first converted to the unsaturated ester 10 in 83% yield, by performing a cross-metathesis with an excess of methyl acrylate in the presence of the Grubbs-Hoveyda second generation catalyst (HG-II, 5–8 mol %)¹⁵ under microwave irradiation, for 2 h. After hydrogenation [H₂, (1 atm), Pd/C (10 mol %), EtOAc, 2 h] and treatment under acidic conditions (cat. CSA, CH₂Cl₂, rt. 2 h), lactone 11 was isolated in quantitative yield. Lactone 11 was then transformed to lactol 14 in three steps. The first step involved the addition of 4-pentenyl magnesium bromide to 11 (Et₂O, -20 °C), and lactol 12 was produced in 93% yield. This latter was then condensed with allyl acetate 13¹⁶ utilizing the Grubbs-Hoveyda second generation catalyst¹⁵ (HG-II, 10 mol %, microwave irradiation, CH₂Cl₂, 2 h) to furnish a mixture of two products: lactol 14 and its glycal derivative. Upon treatment with a catalytic amount of CSA in wet THF, the crude mixture gave the functionalized lactol 14 (88%), the precursor of spiroketal 15.

Following treatment of **14** with FeCl₃·6H₂O (5 mol %, CH₂Cl₂, rt)¹⁰ the desired spiroketal **15** was isolated in 59% yield (Scheme 7). Spiroketal **15** was then cleaved

Scheme 6. Synthesis of Intermediate 14

with O₃ (-78 °C, CH₂Cl₂, then Me₂S), to produce the corresponding aldehyde which was directly used for a Wittig reaction with phosphonium salt 16¹⁷ (*n*-BuLi, THF, 0 °C) to generate alkene 17 in 79% yield (two steps). In order to install the amino group at C19, the silyl ether was cleaved (TBAF, THF, 93%) and the resulting hydroxyl group was transformed to a phthalimido group under Mitsunobu conditions (phthalimide, PPh₃, DIAD). A two-step one-pot hydrogenation/deprotection sequence (1 atm of H₂, Pd/C) led to hydroxyl-phthalimido spiroketal 18 which was isolated in 87% yield. Oxidation of 18 (TPAP, NMO, MS 4 Å, CH₂Cl₂) to the corresponding aldehyde and a HWE reaction, using activated Ba(OH)₂·8H₂O as a base, afforded enone 19 in 75% yield, when the phthalimido group had been cleaved.

The formation of this amido carboxylic acid was not a dramatic issue as the treatment of **19** with DCC (CH₂Cl₂, 0 °C, 30 min then rt, 1 h) and then with *N*-methylhydrazine (THF, -10 °C, 10 min) produced the desired amino group at C19.¹⁸ The resulting amine was then coupled with the previously synthesized amino acid **6**, using PyBOP (*i*Pr₂NEt, DMF, rt), to afford compound **20** which can give access to bistramide C and 39-oxobistramide K after Fmoc removal⁹ⁿ and immediate peptide coupling with the appropriate C1–C13¹⁹ lateral chain of bistramides.

6020 Org. Lett., Vol. 13, No. 22, 2011

⁽¹³⁾ Freeman, F.; Kim, D. S. H. L.; Rodriguez, E. J. Org. Chem. **1992**, *57*, 1722–1727.

⁽¹⁴⁾ Due to the very small value of optical rotation for compound 9, when the analysis was performed in aprotic solvent, $[\alpha]_D^{20} = -0.2$ (c = 1, CHCl₃); measurement was done in protic solvent at higher concentration to obtain a stable value ($[\alpha]_D^{20} = +4.5$ (c = 6.4, EtOH).

^{(15) (}a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. *Org. Lett.* **1999**, *1*, 953–956. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2000**, *122*, 8168–8179.

⁽¹⁶⁾ Marion, N.; Gealageas, R.; Nolan, S. P. Org. Lett. 2007, 9, 2653–2656.

⁽¹⁷⁾ Compound **16** was prepared according to the following synthetic sequence: (a) (Benzylation) Widmer, U. *Synthesis* **1987**, 568–570. (b) (Ester reduction) White, J. D.; Kawasaki, M. *J. Org. Chem.* **1992**, *57*, 5292–5300. (c) (Bromination) Boons, G.-J.; Clase, J. A.; Lennon, J. C.; Ley, S. V.; Staunton, J. *Tetrahedron* **1995**, *51*, 5417–5446. (d) (Preparation of phosphonium salt) See ref 9f.

⁽¹⁸⁾ Stocksdale, M. G.; Ramurthy, S.; Miller, M. J. J. Org. Chem. **1998**, *63*, 1221–1225.

⁽¹⁹⁾ See ref 9a, 9c-9h, 9j, 9l-9o.

⁽²⁰⁾ Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986–2012.

Scheme 7. Synthesis of Spiroketal 20

It is worth noting that enone 19 was reduced to alcohol 21 using (R)-CBS and catechol borane²⁰ in 64% yield over three steps, starting from 18, with good diastereoselectivity (dr > 95:5) (Scheme 8). Alcohol 21, through the sequence described previously [phthalimide removal, peptide coupling with 6 (Scheme 7), Fmoc removal, and

Scheme 8. Chemoselective Reduction of the Enone of 19

peptide coupling with the appropriate C1–C13 chain], can potentially lead to bistramides A, B, D, K, and L.

In summary, compound **20** was synthesized in 19 steps with an overall yield of 6.2% and can be utilized to synthesize bistramide C and 39-oxobistramide K by realizing a peptide coupling with the appropriate carboxylic acid C1–C13. 19 On the other hand, **21** can be the precursor of bistramides A, B, D, K, and L. Based on recent SAR studies, ^{7b,d} showing that the biological activity of bistramide derivatives is strongly dependent on the C14–C40 subunit, our platform offers a straightforward access to a range of analogues. Furthermore, due to the versatility of allyl metals for controlling the stereogenic centers at C15–C16 and at C22–C23, a great diversity of stereoisomers can, in principle, be easily reached.

Acknowledgment. Dr. Serge Sablé (Sanofi-Aventis, Vitry-sur-Seine, France) is acknowledged for his contribution for the structural determinations.

Supporting Information Available. Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 22, 2011